Other Topologies

The back-propagation procedure is not
limited to feed-forward cascades.

It can be applied to networks of module
with any topology, as long as the
connection graph is acyclic.

If the graph is acyclic (no loops) then, we
can easily find a suitable order in which to
call the fprop method of each module.

The bprop methods are called in the
reverse order.

If the graph has cycles (loops) we have a
so-calledrecurrent network. This will be
studied in a subsequent lecture.
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More Modules

A rich repertoire of learning machines can be constructet st a few module types
in addition to the linear, sigmoid, and euclidean moduledvae already seen.
We will review a few important modules:

The branch/plus module
The switch module

The Softmax module
The logsum module
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The Branch/Plus Module

The PLUS module: a module witR inputs
X1,..., Xk (of any type) that computes the sum

of its inputs:
Xout = ZXk:
k
back-prop: 5 = 5%~ Vk

The BRANCH module: a module with one input
and K outputsXy, ..., Xk (of any type) that
simply copies its input on its outputs:

S
: X=X, Vk € [1K]

oF

back-prop:5& = >, &
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The Switch Module

A module with K inputs X, ..., Xk (of
any type) and one additional
)au,» discrete-valued inpu’.

The value of the discrete input determines

which of theV inputs is copied to the
output.

Xous = ¥ _0(Y — k) Xy,
k

oF oOF

—— =Y —k
0Xk ( )aXout

the gradient with respect to the output is
xl X2 x} X‘, ), copied to the gradient with respect to the

switched-in input. The gradients of all other
Inputs are zero.

.‘-
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The Logsum Module

fprop:
1
Xout = ——log Y ~exp(—BXy)
5 k
bprop:
oF o OF exp(—ﬁXk)
an 8X0ut Zg eXp(—ﬁXj)
or
OF OF
— = P
an 8Xout "
with
Pk _ exp(—ﬁXk)

Zj eXp(_ﬁXj)
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Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss Ly (W, Y, X)) =

4EWJ
L
| [ager
Eyi g,

E(W,Y?, X?) + 4 log 3, exp(—BE(W, k, X*))

A classifier trained with the
Log-Likelihood loss can be
transformed into an equivalent
machine trained with the energy
loss.

The transformed machine contains
multiple “replicas” of the classifier,
one replica for the desired output,
and K replicas for each possible
value ofY’.
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Softmax Module

A single vector as input, and a “normalized” vector as output

exp(—06x;)
Xou T —
Kon)i = 5~ exp(— i)
Exercise: find the bprop
a(Xout)i

=777
(%zj
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Radial Basis Function Network (RBF Net)

rp—

| §1~-n?
Q Linearly combined Gaussian
y bumps.
LIVEARS
U F(X, W, U) —
S ugexp(—ki (X — W;)?)
The centers of the bumps can be
Initialized with the K-means
6P 0-4" e!tr(m,) algorithm (see below), and
\ subsequently adjusted with gradient

descent.
| x- tl HJW This is a good architecture for re-
gression and function approxima-

tion.
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MAP/MLE Loss and Cross-Entropy

classification ¢ is scalar and discrete). Let’s dendtgy, X, W) = E, (X, W)
MAP/MLE Loss Function:

log 3" exp(~BEL (X, W)
k

This loss can be written as

d L exp(—BE,: (X", W))
EZ: B >k exp(—BER (X1, W))
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Cross-Entropy and KL-Divergence

let's denoteP (| X!, W) = Zixf}g(ﬁ_ gﬂbﬁi){w‘)})) , then

1 1 1
LW) = 5 2 518 pyixi )
1 Dy (1)
M) = :; 5 2 DR 108 B

with Dy (y*) = 1iff kK = y*, and0 otherwise.

examplel:D = (0,0,1,0) andP(.|X;, W) = (0.1,0.1,0.7,0.1). with g = 1,
LY (W) = 1log(1/0.7) = 0.3567

example2:D = (0,0,1,0) andP(.|X;, W) = (0,0,1,0). with 3 = 1,
L' (W) =log(1/1) =0
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Cross-Entropy and KL-Divergence

P .
1 Dy (y")
L(W)=—= — ) log .
W)=7 25 2 De)los oy
L(W) is proportional to theross-entropy between the conditional distribution

of y given by the machiné’ (k| X*, W) and thedesired distribution over classes

for samplei, Dy (y*) (equal to 1 for the desired class, and 0 for the other
classes).

The cross-entropy also callédillback-Leibler divergence between two
distributions@ (k) and P(k) is defined as:

Q(k
ZQ ) log k;

It measures a sort of dissimilarity between two distribngio

the KL-divergence is not a distance, because it is not symenand it does not
satisfy the triangular inequality.
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Multiclass Classification and KL-Divergence

Assume that our discriminant modulg§ X, W)
produces a vector of energies, with one energy
E(X, W) for each class.

A switch module selects the smalldst to perform
the classification.

As shown above, the MAP/MLE loss below be seen
as a KL-divergence between the desired distribution
for y, and the distribution produced by the machine.

1 P

=5 Z[Eyi (X", W)

1=1

1
b,

log Z GXP(_ﬁEkz(Xia w))]
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Multiclass Classification and Softmax

The previous machine: discriminant function with one
output per class + switch, with MAP/MLE loss

It is equivalent to the following machine: discriminant
function with one output per class + softmax + switch
+ log loss

P
Z —log P(y'| X, W)

with P(j| X7, W) = 2LCOBC I (softmax of
the —Ej ,S).

Machines can be transformed into various equivalent

forms to factorize the computation in advantageous
ways.
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Multiclass Classification with a Junk Category

Sometimes, one of the categories is “none of the above”, lemwne handle
that?

We add an extra energy witg, for the “junk” category which does not depend
on the input.E; can be a hand-chosen constant or can be equal to a trainable
parameter (let’s call itvg).

everything else is the same.
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NN-RBF Hybrids

sigmoid units are generally more
appropriate for low-level feature
extraction.

Euclidean/RBF units are generally more
appropriate for final classifications,
particularly if there are many classes.

Hybrid architecture for multiclass classifi-
cation: sigmoids below, RBFs on top + soft-
max + log loss.
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Parameter-Space Transforms

Reparameterizing the function by transforming the space

E(Y,X,W) — E(Y, X,G(U))

E

gradient descent iy space:

8G! OE(Y, X, W)’
U—U—-n55 oW

equivalent to the following algorithm i/

oG oG ' OE(Y, X, W)/
oU oU 191%%

dimensions]N,, X N,|[Ny X Ny|[Ny]

spaceWW «— W —n
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Parameter-Space Transforms: Weight Sharing

E

W A single parameter is replicated multiple
times in a machine

WEY X, w,...,wi,...,Wj,...) =
E(Y, X, wi,...,Uky..-,Uk,-..)

9E() _ 0E() | 9E()

8uk 8’(1)z 8wj
W w; andw; are tied, or equivalentlyyy, Is
shared between two locations.

W gradient:

Y. LeCun: Machine Learnina and Pattern Recoanition — bD.



Parameter Sharing between Replicas

We have seen this before: a parameter controls
several replicas of a machine.

E(Y17Y27X7 W) — El(Y17X7 W)+E1(Y27X7 W)

gradient:
OE(Y1,Y2, X, W) __ 0E1(Y1,X,W) i OE1 (Yo, X, W)
oW = oW oW

W is shared between two (or more) instances of
the machine: just sum up the gradient contribu-

tions from each instance.
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Path Summation (Path Integral)

One variable influences the output through several others

£

WEY X W)=
E(Y,Fi(X, W), F5(X,W), F35(X,W),V)
PE(YV,X,W) _ T OE;(Y,S:,V) OF;(X,W)

W gradient:

it OB, X W) <~ 9Ei(Y,S:,V) 0Fi(X,W)
W gradient: =g = >, T 5% ST

M there is no need to implement these rules ex-
plicitely. They come out naturally of the object-
oriented implementation.
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Mixtures of Experts

Sometimes, the function to be learned is consistent inicgstt domains of the input

space, but globally inconsisteriixample: piecewise linearly separable function.
Solution: a machine composed of several
“experts” that are specialized on subdomains of

r———"—'T _ the input space.

[ehr P* The output is a weighted combination of the
_{ outputs of each expert. The weights are produced
by a “gater” network that identifies which
/ subdomain the input vector is in.
F(X, W) =Y, uw, F*(X, WF) with
_ exp(—BGLr(X, WY
il Uk = 3 Bt SR (X
1 7 the expert weights,, are obtained by softmax-ing
b—_l—-ﬁh—~
X y the outputs of the gater.

example: the two experts are linear regressors, the
gater is a logistic regressor.
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Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectoxs.

simple idea: the machine takes a time
window as input

R = F(Xt7 Xt—17 Xt—27 W)
Examples of use:

W predict the next sample in a time
series (e.g. stock market, water
consumption)

W predict the next character or word in a
text

W classify an intron/exon transition in a
DNA sequence
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Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stackeddelayed layers.
layerl X! = FY( X, Xi—1, Xy_o, W1)
layer2X? = FY(X}, X} [, X}, W?)
costE; = C(X},Y;)

Examples:

predict the next sample in a time series with
long-term memory (e.g. stock market, water
consumption)

recognize spoken words
recognize gestures and handwritten
— characters on a pen computer.

How do we train?

i
/)

e [T 20PN 7

Xt
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Training a TDNN

ldea: isolate the minimal network that in uences the enaaggne particular time step

L.
In our example, this is in uenced by 5 time

steps on the input.

train this network in isolation, taking those
5 time steps as the input.

Surprise we have three identical replicas
of the rst layer units that share the same
weights.

We know how to deal with that.

do the regular backprop, and add up the
contributions to the gradient from the 3
replicas
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