The back-propagation procedure is not limited to feed-forward cascades.

It can be applied to networks of module with *any* topology, as long as the connection graph is acyclic.

If the graph is acyclic (no loops) then, we can easily find a suitable order in which to call the fprop method of each module.

The bprop methods are called in the reverse order.

If the graph has cycles (loops) we have a so-called *recurrent network*. This will be studied in a subsequent lecture.
More Modules

A rich repertoire of learning machines can be constructed with just a few module types in addition to the linear, sigmoid, and euclidean modules we have already seen. We will review a few important modules:

- The branch/plus module
- The switch module
- The Softmax module
- The logsum module
The PLUS module: a module with K inputs X_1, \ldots, X_K (of any type) that computes the sum of its inputs:

$$X_{out} = \sum_k X_k$$

back-prop: $\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{out}} \quad \forall k$

The BRANCH module: a module with one input and K outputs X_1, \ldots, X_K (of any type) that simply copies its input on its outputs:

$$X_k = X_{in} \quad \forall k \in [1..K]$$

back-prop: $\frac{\partial E}{\partial in} = \sum_k \frac{\partial E}{\partial X_k}$
The Switch Module

- A module with K inputs X_1, \ldots, X_K (of any type) and one additional discrete-valued input Y.
- The value of the discrete input determines which of the N inputs is copied to the output.

\[
X_{\text{out}} = \sum_k \delta(Y - k) X_k
\]

\[
\frac{\partial E}{\partial X_k} = \delta(Y - k) \frac{\partial E}{\partial X_{\text{out}}}
\]

the gradient with respect to the output is copied to the gradient with respect to the switched-in input. The gradients of all other inputs are zero.
The Logsum Module

fprop:

\[X_{out} = -\frac{1}{\beta} \log \sum_k \exp(-\beta X_k) \]

bprop:

\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{out}} \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]

or

\[\frac{\partial E}{\partial X_k} = \frac{\partial E}{\partial X_{out}} P_k \]

with

\[P_k = \frac{\exp(-\beta X_k)}{\sum_j \exp(-\beta X_j)} \]
Log-Likelihood Loss function and Logsum Modules

MAP/MLE Loss $L_{ll}(W, Y^i, X^i) = E(W, Y^i, X^i) + \frac{1}{\beta} \log \sum_k \exp(-\beta E(W, k, X^i))$

- A classifier trained with the Log-Likelihood loss can be transformed into an equivalent machine trained with the energy loss.
- The transformed machine contains multiple “replicas” of the classifier, one replica for the desired output, and K replicas for each possible value of Y.
Softmax Module

A single vector as input, and a “normalized” vector as output:

\[(X_{out})_i = \frac{\exp(-\beta x_i)}{\sum_k \exp(-\beta x_k)}\]

Exercise: find the bprop

\[\frac{\partial (X_{out})_i}{\partial x_j} = ???\]
Radial Basis Function Network (RBF Net)

- Linearly combined Gaussian bumps.
- \(F(X, W, U) = \sum_i u_i \exp(-k_i (X - W_i)^2) \)
- The centers of the bumps can be initialized with the K-means algorithm (see below), and subsequently adjusted with gradient descent.
- This is a good architecture for regression and function approximation.
MAP/MLE Loss and Cross-Entropy

- classification (y is scalar and discrete). Let’s denote $E(y, X, W) = E_y(X, W)$

- MAP/MLE Loss Function:

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \left[E_{y^i}(X^i, W) + \frac{1}{\beta} \log \sum_{k} \exp(-\beta E_k(X^i, W)) \right]$$

- This loss can be written as

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{\exp(-\beta E_{y^i}(X^i, W))}{\sum_{k} \exp(-\beta E_k(X^i, W))}$$
Cross-Entropy and KL-Divergence

- Let’s denote

 \[P(j|X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \]

 then

 \[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \log \frac{1}{P(y^i|X^i, W)} \]

 \[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_k D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)} \]

 with \(D_k(y^i) = 1 \) iff \(k = y^i \), and 0 otherwise.

- Example 1: \(D = (0, 0, 1, 0) \) and \(P(.|X^i, W) = (0.1, 0.1, 0.7, 0.1) \). With \(\beta = 1 \),

 \(L^i(W) = \log(1/0.7) = 0.3567 \)

- Example 2: \(D = (0, 0, 1, 0) \) and \(P(.|X^i, W) = (0, 0, 1, 0) \). With \(\beta = 1 \),

 \(L^i(W) = \log(1/1) = 0 \)
Cross-Entropy and KL-Divergence

\[L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} \sum_{k} D_k(y^i) \log \frac{D_k(y^i)}{P(k|X^i, W)} \]

- \(L(W) \) is proportional to the cross-entropy between the conditional distribution of \(y \) given by the machine \(P(k|X^i, W) \) and the desired distribution over classes for sample \(i \), \(D_k(y^i) \) (equal to 1 for the desired class, and 0 for the other classes).
- The cross-entropy also called Kullback-Leibler divergence between two distributions \(Q(k) \) and \(P(k) \) is defined as:

\[\sum_{k} Q(k) \log \frac{Q(k)}{P(k)} \]

- It measures a sort of dissimilarity between two distributions.
- the KL-divergence is not a distance, because it is not symmetric, and it does not satisfy the triangular inequality.
Assume that our discriminant module $F(X, W)$ produces a vector of energies, with one energy $E_k(X, W)$ for each class.

A switch module selects the smallest E_k to perform the classification.

As shown above, the MAP/MLE loss below be seen as a KL-divergence between the desired distribution for y, and the distribution produced by the machine.

$$L(W) = \frac{1}{P} \sum_{i=1}^{P} [E_{y^i}(X^i, W) + \frac{1}{\beta} \log \sum_k \exp(-\beta E_k(X^i, W))]$$
Multiclass Classification and Softmax

- The previous machine: discriminant function with one output per class + switch, with MAP/MLE loss
- It is equivalent to the following machine: discriminant function with one output per class + softmax + switch + log loss

\[
L(W) = \frac{1}{P} \sum_{i=1}^{P} \frac{1}{\beta} - \log P(y^i | X, W)
\]

with \(P(j | X^i, W) = \frac{\exp(-\beta E_j(X^i, W))}{\sum_k \exp(-\beta E_k(X^i, W))} \) (softmax of the \(-E_j\)'s).

- Machines can be transformed into various equivalent forms to factorize the computation in advantageous ways.
Multiclass Classification with a Junk Category

- Sometimes, one of the categories is “none of the above”, how can we handle that?
- We add an extra energy wire E_0 for the “junk” category which does not depend on the input. E_0 can be a hand-chosen constant or can be equal to a trainable parameter (let’s call it w_0).
- Everything else is the same.
NN-RBF Hybrids

- Sigmoid units are generally more appropriate for low-level feature extraction.
- Euclidean/RBF units are generally more appropriate for final classifications, particularly if there are many classes.
- Hybrid architecture for multiclass classification: sigmoids below, RBFs on top + softmax + log loss.
Parameter-Space Transforms

Reparameterizing the function by transforming the space

\[E(Y, X, W) \rightarrow E(Y, X, G(U)) \]

- gradient descent in \(U \) space:
 \[U \leftarrow U - \eta \frac{\partial G}{\partial U} \frac{\partial E(Y, X, W)}{\partial W} \]

- equivalent to the following algorithm in \(W \) space:
 \[W \leftarrow W - \eta \frac{\partial G}{\partial U} \frac{\partial E(Y, X, W)}{\partial W} \]

- dimensions: \([N_w \times N_u][N_u \times N_w][N_w]\)
Parameter-Space Transforms: Weight Sharing

- A single parameter is replicated multiple times in a machine
- \(E(Y, X, w_1, \ldots, w_i, \ldots, w_j, \ldots) \rightarrow E(Y, X, w_1, \ldots, u_k, \ldots, u_k, \ldots) \)
- gradient: \(\frac{\partial E()}{\partial u_k} = \frac{\partial E()}{\partial w_i} + \frac{\partial E()}{\partial w_j} \)
- \(w_i \) and \(w_j \) are tied, or equivalently, \(u_k \) is shared between two locations.
Parameter Sharing between Replicas

- We have seen this before: a parameter controls several replicas of a machine.

\[E(Y_1, Y_2, X, W) = E_1(Y_1, X, W) + E_1(Y_2, X, W) \]

- gradient:

\[\frac{\partial E(Y_1, Y_2, X, W)}{\partial W} = \frac{\partial E_1(Y_1, X, W)}{\partial W} + \frac{\partial E_1(Y_2, X, W)}{\partial W} \]

- \(W \) is shared between two (or more) instances of the machine: just sum up the gradient contributions from each instance.
Path Summation (Path Integral)

One variable influences the output through several others

\[E(Y, X, W) = E(Y, F_1(X, W), F_2(X, W), F_3(X, W), V) \]

gradient: \[\frac{\partial E(Y, X, W)}{\partial X} = \sum_i \frac{\partial E_i(Y, S_i, V)}{\partial S_i} \frac{\partial F_i(X, W)}{\partial X} \]

gradient: \[\frac{\partial E(Y, X, W)}{\partial W} = \sum_i \frac{\partial E_i(Y, S_i, V)}{\partial S_i} \frac{\partial F_i(X, W)}{\partial W} \]

there is no need to implement these rules explicitly. They come out naturally of the object-oriented implementation.
Mixtures of Experts

Sometimes, the function to be learned is consistent in restricted domains of the input space, but globally inconsistent. **Example: piecewise linearly separable function.**

- **Solution:** a machine composed of several “experts” that are specialized on subdomains of the input space.

- The output is a weighted combination of the outputs of each expert. The weights are produced by a “gater” network that identifies which subdomain the input vector is in.

\[F(X, W) = \sum_k u_k F^k(X, W^k) \]

\[u_k = \frac{\exp(-\beta G_k(X, W^0))}{\sum_k \exp(-\beta G_k(X, W^0))} \]

- the expert weights \(u_k \) are obtained by softmax-ing the outputs of the gater.

- example: the two experts are linear regressors, the gater is a logistic regressor.
Sequence Processing: Time-Delayed Inputs

The input is a sequence of vectors X_t.

- simple idea: the machine takes a time window as input
- $R = F(X_t, X_{t-1}, X_{t-2}, W)$
- Examples of use:
 - predict the next sample in a time series (e.g. stock market, water consumption)
 - predict the next character or word in a text
 - classify an intron/exon transition in a DNA sequence
Sequence Processing: Time-Delay Networks

One layer produces a sequence for the next layer: stacked time-delayed layers.

- layer 1: $X^1_t = F^1(X_t, X_{t-1}, X_{t-2}, W^1)$
- layer 2: $X^2_t = F^1(X^1_t, X^1_{t-1}, X^1_{t-2}, W^2)$
- cost: $E_t = C(X^1_t, Y_t)$

Examples:

- predict the next sample in a time series with long-term memory (e.g., stock market, water consumption)
- recognize spoken words
- recognize gestures and handwritten characters on a pen computer.

How do we train?
Training a TDNN

Idea: isolate the minimal network that influences the energy at one particular time step t.

- in our example, this is influenced by 5 time steps on the input.
- train this network in isolation, taking those 5 time steps as the input.
- **Surprise**: we have three identical replicas of the first layer units that share the same weights.
- We know how to deal with that.
- do the regular backprop, and add up the contributions to the gradient from the 3 replicas
If the first layer is a set of linear units with sigmoids, we can view it as performing a sort of *multiple discrete convolutions* of the input sequence.

1D convolution operation:

\[S^1_t = \sum_{j=1}^{T} W^1_j X_{t-j}. \]

- \(w_{jk} \quad j \in [1, T] \) is a *convolution kernel*
- sigmoid \(X^1_t = \tanh(S^1_t) \)
- derivative: \(\frac{\partial E}{\partial w_{jk}} = \sum_{t=1}^{3} \frac{\partial E}{\partial S^1_t} X_{t-j} \)
Simple Recurrent Machines

The output of a machine is fed back to some of its inputs Z. $Z_{t+1} = F(X_t, Z_t, W)$, where t is a time index. The input X is not just a vector but a sequence of vectors X_t.

- This machine is a *dynamical system* with an internal state Z_t.
- Hidden Markov Models are a special case of recurrent machines where F is linear.
To train a recurrent net: “unfold” it in time and turn it into a feed-forward net with as many layers as there are time steps in the input sequence.

An unfolded recurrent net is a very “deep” machine where all the layers are identical and share the same weights.

\[
\frac{\partial E}{\partial W} = \sum_t \frac{\partial E}{\partial Z_t} \frac{\partial F(X_t, Z_t, W)}{\partial W}
\]

This method is called back-propagation through time.

Examples of use: process control (steel mill, chemical plant, pollution control...), robot control, dynamical system modelling...