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An instrument of mass machine learning

Mechanical Turk is a marketplace for work.
We give businesses and developers access to an on-demand, scalable workforce.
Workers select from thousands of tasks and work whenever it's convenient.

255,697 HITs available. View them now.

Make Money Get Results
by working on HITs

HITs - Hurnar Intelligence Tasks - are individual tasks that Ask workers £0 complete HITs - Human Intslligence Tasks - and

you work on. Find HITs now. get results using Mechanical Turk. Register Mow
As a Mechanical Turk Worker you: As a Mechanical Turk Requester you:
® Can work fram home ® Hawe access to a global, on-demand, 24 » 7 workfarce

® Getthousands of HITs completed in minutes

® Choose your own work hours . -
v ® pay only when you're satisfied with the results

® Get paid for doing good work

Find an Work Earn Fund your Load ynur Get
interesting task money account results
( HITs Now_ | TR

or learn more sbout being 5 Worker

How can we formalize it's use?



Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.
documents off the web
speech samples
images and video

But labeling can be expensive.
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Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.
documents off the web
speech samples
images and video

But labeling can be expensive.
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Active Learning

Can interaction help us learn effectively?

The Active Learning Setting
Repeatedly:
@ Observe unlabeled example x.
@ Asking for label? Yes/no
© If yes, observe label y.

Goal: Simultaneously optimize quality of learned classifier and
minimize the number of labels requested.



Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far

Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)
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Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat
Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)
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Sampling bias

Start with a pool of unlabeled data
Pick a few points at random and get their labels
Repeat

Fit a classifier to the labels seen so far

Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

-

45% 5% 5% 45%



Sampling bias

Start with a pool of unlabeled data
Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far

Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

-

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

This problem occurs in practice.



Importance Weighted Active Learning via Reduction

S=0
While (unlabeled examples remain)
@ Receive unlabeled example x.
@ Choose a probability of labeling p.
© With probability p get label y, and add (x, y, %) to S.
Q Let h = Learn(S).

Consistency Theorem: For all methods choosing p > 0, the
algorithm is consistent.



How should be chosen?
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let: &(h,S) = %Z(X%,)es i1(h(x) # y) = importance weighted
error rate.
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How should be chosen?

On the kth unlabeled point

let: &(h,S) = %Z(X%,)es i1(h(x) # y) = importance weighted
error rate.

Let /" = minimum error rate hypothesis choosing other label.
Let A = &(H,S) —&(h,S) = error rate difference.

Choose p = 1 if A < O( log k

k

; log k
Otherwise, let p = O (Zggk)

Accuracy Theorem: With high probability, the IWAL reduction has
a similar error rate to supervised learning on k points.

Efficiency Theorem: If there is a small disagreement coefficient 6,
the algorithm requires only O (Qw/k log k) -+ a minimum due to
noise.
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Disagreement Coefficient

Characterizes known examples where active learning can help.
Defined for any set of classifiers H and distribution D.

For any ¢ features x are of interest if there exists a hypothesis h:
© With error rate less than ¢ larger than the best h*.
@ That disagress with the best hypothesis, h*(x) # h(x).

Pr(interesting, x)

Disagreement coefficient is § = max, :
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Disagreement coefficient: examples

@ Thresholds in R, any data distribution.

0 =2.
o Linear separators through the origin in R?, uniform data
distribution.
0 <Vd.
e Linear separators in R?, smooth data density bounded away
from zero.
0 < c(h*)d

where c(h*) is a constant depending on the target h*.
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of a coin flip so that:
@ The average number of heads is small: %Z(h,p)es g < 0.5.
@ The number of coin flips is minimized: min Z(hp)esp .
© The probability is nontrivial: p > 0.



The Martingale Barrier Problem

Proofs are complex, but rest on the solution to a Martingale
Barrier Problem.

Given a coin of bias < 0.5, how can we choose the probability of p
of a coin flip so that:

© The average number of heads is small: %Z(h,p)es g < 0.5.
@ The number of coin flips is minimized: min Z(h.p)esp .
© The probability is nontrivial: p > 0.

p too small, implies that condition (1) is violated with a reasonable
probability.



Decision Tree Experiments
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An Approximate IWAL

Let h(x) = Learn(5).
Let h'(x) = Learnp(,).,(S).
Claim: If Learn minimizes error rates, for all e > 0

Learn(S U (x, —h(x), tA +¢€)) = H'(x)

In other words t/A = importance weight required to change label
for current x.



An Approximate IWAL

Let h(x) = Learn(5).
Let h'(x) = Learnp(,).,(S).
Claim: If Learn minimizes error rates, for all e > 0

Learn(S U (x, —h(x), tA +¢€)) = H'(x)

In other words t/A = importance weight required to change label
for current x.

Using Vowpal Wabbit as base learner, estimate ¢ - A as the number
of gradient updates with x required for prediction to switch (from
0 to 1, or from 1 to 0).

e.g., for importance weight-aware square-loss update:

1 h(x), 1 —h
A L om0, 1 ()
t-n: 0.5
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Simulating active learning: (tuning paramter C > 0)
vw —--active_simulation --active_mellowness C
(increasing C — oo = supervised learning)



Active learning in Vowpal Wabbit

Simulating active learning: (tuning paramter C > 0)
vw —--active_simulation --active_mellowness C
(increasing C — oo = supervised learning)

Deploying active learning:
vw —--active_learning --active mellowness C —--daemon

@ vw interacts with an active_interactor (ai)

receives labeled and unlabeled training examples from ai over
network

for each unlabeled data point, vw sends back a query decision
(and an importance weight if label is requested)

ai sends labeled importance-weighted examples as requested

vw trains using labeled importance-weighted examples



Active learning in Vowpal Wabbit

active_interactor vw

1,y_1,1/p_1
(gradient
\ update)

w/

active_interactor.cc (in git repository) demonstrates how to
implement this protocol.



Demonstration: RCV1

vw ——active_simulation --active_mellowness 0.005 -b 22
--loss_function logistic --ngram 2 --skips 4 -c
rcvl.train.raw.txt



Demonstration: RCV1

vw ——active_simulation --active_mellowness 0.005 -b 22
--loss_function logistic --ngram 2 --skips 4 -c
rcvl.train.raw.txt

O 21K labels vs. 760K for supervised
@ 8s vs. 15s for supervised

© Substantially better than uniform random sampling.



Online

Linear Learning results
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Fringe Benefits

This approach has many nice properties.

@ Always consistent.
Q Efficient.
O Label Efficient.
@ Unlabeled data efficient.
©® Computationally efficient.
© Compatible.
@ With Online Algorithms
@ With any optimization-style classification algorithm.
©® With any Loss function
@ With supervised learning
@ With switching learning algorithms (!)

Q It works, empirically.



Many other issues come up when trying to use human labelers.
At NYU, there is some good work by people in Wharton on this.
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