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An instrument of mass machine learning

How can we formalize it’s use?



Exploiting unlabeled data

A lot of unlabeled data is plentiful and cheap, eg.

documents off the web

speech samples

images and video

But labeling can be expensive.
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Active Learning

Can interaction help us learn effectively?

The Active Learning Setting

Repeatedly:

1 Observe unlabeled example x .

2 Asking for label? Yes/no

3 If yes, observe label y .

Goal: Simultaneously optimize quality of learned classifier and
minimize the number of labels requested.



Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Biased sampling: the
labeled points are not
representative of the
underlying distribution!
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Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

This problem occurs in practice.
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Importance Weighted Active Learning via Reduction

S = ∅
While (unlabeled examples remain)

1 Receive unlabeled example x .

2 Choose a probability of labeling p.

3 With probability p get label y , and add (x , y , 1
p ) to S .

4 Let h = Learn(S).

Consistency Theorem: For all methods choosing p > 0, the
algorithm is consistent.



How should p be chosen?

On the kth unlabeled point

let: ê(h,S) = 1
k

∑
(x ,y ,i)∈S i1(h(x) 6= y) = importance weighted

error rate.

Let h′ = minimum error rate hypothesis choosing other label.
Let ∆ = ê(h′,S)− ê(h,S) = error rate difference.

Choose p = 1 if ∆ ≤ O

(√
log k
k

)
Otherwise, let p = O

(
log k
∆2k

)

Accuracy Theorem: With high probability, the IWAL reduction has
a similar error rate to supervised learning on k points.

Efficiency Theorem: If there is a small disagreement coefficient θ,
the algorithm requires only O

(
θ
√
k log k

)
+ a minimum due to

noise.
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Disagreement Coefficient

Characterizes known examples where active learning can help.
Defined for any set of classifiers H and distribution D.

For any ε features x are of interest if there exists a hypothesis h:

1 With error rate less than ε larger than the best h∗.

2 That disagress with the best hypothesis, h∗(x) 6= h(x).

Disagreement coefficient is θ = maxε
Pr(interestingε x)

ε
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Disagreement coefficient: examples

Thresholds in R, any data distribution.

θ = 2.

Linear separators through the origin in Rd , uniform data
distribution.

θ ≤
√
d .

Linear separators in Rd , smooth data density bounded away
from zero.

θ ≤ c(h∗)d

where c(h∗) is a constant depending on the target h∗.
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The Martingale Barrier Problem

Proofs are complex, but rest on the solution to a Martingale
Barrier Problem.

Given a coin of bias < 0.5, how can we choose the probability of p
of a coin flip so that:

1 The average number of heads is small: 1
k

∑
(h,p)∈S

h
p < 0.5.

2 The number of coin flips is minimized: min
∑

(h,p)∈S p .

3 The probability is nontrivial: p > 0.

p too small, implies that condition (1) is violated with a reasonable
probability.
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Decision Tree Experiments
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An Approximate IWAL

Let h(x) = Learn(S).
Let h′(x) = Learnh(x)6=y (S).
Claim: If Learn minimizes error rates, for all ε > 0

Learn(S ∪ (x ,−h(x), t∆ + ε)) = h′(x)

In other words t∆ = importance weight required to change label
for current x .

Using Vowpal Wabbit as base learner, estimate t ·∆ as the number
of gradient updates with x required for prediction to switch (from
0 to 1, or from 1 to 0).

e.g., for importance weight-aware square-loss update:

∆t :=
1

t · ηt
· log

max{h(x), 1− h(x)}
0.5
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Active learning in Vowpal Wabbit

Simulating active learning: (tuning paramter C > 0)
vw --active simulation --active mellowness C

(increasing C →∞ = supervised learning)

Deploying active learning:
vw --active learning --active mellowness C --daemon

vw interacts with an active interactor (ai)

receives labeled and unlabeled training examples from ai over
network

for each unlabeled data point, vw sends back a query decision
(and an importance weight if label is requested)

ai sends labeled importance-weighted examples as requested

vw trains using labeled importance-weighted examples
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Active learning in Vowpal Wabbit

active_interactor vw

x_1

(query, 1/p_1)

(x_1,y_1,1/p_1)

x_2

(no query)

(gradient
 update)

.
.
.

active interactor.cc (in git repository) demonstrates how to

implement this protocol.



Demonstration: RCV1

vw --active simulation --active mellowness 0.005 -b 22

--loss function logistic --ngram 2 --skips 4 -c

rcv1.train.raw.txt

1 21K labels vs. 760K for supervised

2 8s vs. 15s for supervised

3 Substantially better than uniform random sampling.
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Online Linear Learning results
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Fringe Benefits

This approach has many nice properties.

1 Always consistent.
2 Efficient.

1 Label Efficient.
2 Unlabeled data efficient.
3 Computationally efficient.

3 Compatible.
1 With Online Algorithms
2 With any optimization-style classification algorithm.
3 With any Loss function
4 With supervised learning
5 With switching learning algorithms (!)

4 It works, empirically.
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Are we done?

Many other issues come up when trying to use human labelers.
At NYU, there is some good work by people in Wharton on this.
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